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A B S T R A C T   

Soiling impacts the photovoltaic (PV) module performance by reducing the amount of light reaching the 
photovoltaic cells and by changing their external spectral response. Currently, the soiling monitoring market is 
moving toward optical sensors that measure transmittance or reflectance, rather than directly measuring the 
impact of soiling on the performance of photovoltaic modules. These sensors, which use a single optical mea
surement, are not able to correct the soiling losses that depend on the solar irradiance spectra and on the spectral 
response of the monitored PV material. This work investigates methods that can improve the optical detection of 
soiling by extracting the full soiling spectrum profiles using only two or three monochromatic measurements. 
Spectral transmittance data, measured with a spectrophotometer and collected during a 46-week experimental 
soiling study carried out in Ja�en, Spain, was analysed in this work. The use of a spectral profile for the hemi
spherical transmittance of soiled PV glass is found to significantly improve the soiling detection, returning the 
lowest errors independently of the PV materials and irradiance conditions. In addition, this work shows that it is 
also possible to select the measurement wavelengths to minimize the soiling loss detection error depending on 
the monitored PV semiconductor material (silicon, CdTe, a-Si, CIGS and a representative perovskite). The ap
proaches discussed in this work are also found to be more robust to potential measurement errors compared to 
single wavelength measurement techniques.   

1. Introduction 

The accumulation of dust, particles, and contaminants on the surface 
of photovoltaic (PV) modules, a process known as soiling, produces 
significant losses worldwide [1]. The soiling layer deposited on modules 
causes forward and backward scattering of some of the sunlight, and 
increases the portion of light reflected and absorbed, reducing the 
amount of energy that reaches the photovoltaic cell that can be con
verted into electricity [2]. 

The amount of energy produced by a PV module depends on the 
spectral profile of the incoming solar irradiance that reaches the PV cell 
and the internal spectral response of the PV cell itself. In addition, the 
impact of soiling on the transmittance of the PV cover glass is not uni
form across the spectrum of sunlight, but varies with the wavelength. 
More losses are registered in the blue region of the spectrum at shorter 
wavelengths [3–5]. This means that soiling has a double impact on the 

incoming solar irradiance: (i) it reduces the broadband intensity and, at 
the same time, (ii) changes the spectral distribution of the irradiance 
reaching the PV material [6]. 

The most common soiling mitigation strategy nowadays is the 
cleaning of the PV modules [1]. In order to reduce the costs and maxi
mize the profits, a cleaning is generally operated when its cost is lower 
than the additional revenues gained by the energy recovered [7]. An 
optimal mitigation strategy therefore requires continual monitoring of 
the soiling accumulated on the PV modules. Today, soiling is generally 
monitored through the installation of a soiling station or an optical 
soiling detector. In the first case, the energy output of a soiled PV device 
is compared with the energy output of a similar regularly cleaned PV 
device [8]. This approach allows for the direct measurement of the 
impact of soiling on the performance of PV modules, but requires peri
odic maintenance [9]. In order to lower the cost of soiling monitoring, a 
new class of maintenance-free optical soiling detector products have 
been launched [10–12]. These devices do not require periodic cleanings 
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and are based on a single optical measurement, which is then converted 
into an estimated electrical performance loss for the PV module. 

The aim of this work, which builds on our previously published 
studies [2,3], is to analyse the correlations between transmittance loss 
and electrical losses due to soiling, based on the characteristics of the 
solar irradiance spectrum and different PV semiconductor materials. 
These include: monocrystalline silicon (m-Si); poly-crystalline (or 
multi-crystalline) silicon (p-Si); amorphous silicon (a-Si); Cadmium 
Telluride (CdTe); Copper Indium Gallium (di)Selenide (CIGS) and a 
representative perovskite. In the first part, two methods previously 
presented to estimate the soiling transmittance profiles are employed to 
model the weekly transmittance losses measured for a 46-week outdoor 
data collection study in southern Spain. These methods are compared 
with those based on a single measurement (i.e. monochromatic or 
average transmittance), which neglect the spectral profile of soiling. 

The investigated spectral models require only two or three variables 
as input, and therefore enable modelling the full soiling transmittance 
spectra and the associated PV specific electrical loss. For this reason, in 
the second part of the paper, these models are evaluated for their abil
ities to estimate the soiling induced electrical loss under different irra
diance conditions and for different photovoltaic materials. We compare 
the results with those obtained when the assumption that the broadband 
(or average) transmittance or the transmittance at a single wavelength 
can provide robust estimation of the soiling losses is made. The ultimate 
goal is to investigate whether it is possible to improve the current optical 
soiling detection techniques by using two or three single-value trans
mittance measurements and to determine if this approach makes it 
possible to estimate the soiling ratio with higher accuracy for different 
PV technologies under various solar irradiance conditions. 

2. Background & motivation 

The impact of soiling on the electrical performance of PV modules is 
generally quantified through the soiling ratio [13], rs , which, at a given 
time t, is defined as: 

rsðtÞ¼
IscsoilðtÞ
Iscref ðtÞ

​ (1)  

where IscsoilðtÞ and Iscref ðtÞ are the short-circuit current of the module in 
natural soiling conditions and the short-circuit current that the same 
module would generate if no soiling was accumulated on its surface. 
According to this definition, the soiling ratio changes over time, has a 

value of 1 for no soiling and decreases as soiling increases. The soiling 
losses are given by 1 � rsðtÞ. The use of the short-circuit current ratio of 
Eq. (1), instead of the ratio of the output electrical powers, is possible 
because of the assumption of uniform soiling [8]. 

As mentioned, the impact of soiling on the electrical performance of 
a PV module not only depends on the transmittance of soiling, but also 
on the spectral response of the PV materials and on the spectral distri
bution of the irradiance. The same methodology described in the liter
ature [14] and employed in our previous work [3] has been used to 
calculate the short circuit currents and leads to the following equation: 

rsðtÞ¼
IscsoilðtÞ
Iscref ðtÞ

¼

R λ2
λ1

EGðλ; tÞ⋅τðλ; tÞ⋅SRðλÞ⋅dλ
R λ2

λ1
EGðλ; tÞ⋅SRðλÞ⋅dλ

(2)  

where λ1 and λ2 are the lower and upper limits, respectively, of the 
absorption band of the PV material, EGðλ; tÞ is the spectral distribution of 
the solar irradiance in the plane of the PV modules, and τðλ; tÞ is the 
hemispherical transmittance due to soiling [2,3]. SR(λ) is the spectral 
response of the photovoltaic material (i.e. Si, CdTe, a-Si). 

For this study, we shall neglect the reflection and absorption losses of 
the glass itself. A more precise analysis would include the transmission 
of the clean glass inside the integral of both the numerator and 

Nomenclature 

Symbols 
EG(λ,t) spectral solar irradiance in the plane of the PV modules 

[W/m2/μm] 
Isc(t) short-circuit current of the photovoltaic module at time t 
rs(t) soiling ratio at a given time t 
SR(λ) spectral response of PV device at wavelength λ 

Greek letters 
α* wavelength dependence variable in the modified Ångstr€om 

turbidity equation 
β�sur wavelength independent variable in the modified 

Ångstr€om turbidity equation 
γ* offset correction parameter 
λ Wavelength [μm] 
τ(λ,t) relative hemispherical transmittance at wavelength λ at 

time t 

τbðtÞ broadband (average) relative hemispherical transmittance 
at time t 

Abbreviations 
APE Average Photon Energy [eV] 
MAE Mean Absolute Error/% 
ME Mean Error/% 
WST Waveband Specific Transmittance 
2v1e Two-variable single exponential 
3v1e Three-variable single exponential 

Subscripts 
meas modelled data point 
mod measured data point 
ref reference (clean) module or coupon 
soil soiled module or glass coupon 
i a counting index  

Fig. 1. Examples of the relative hemispherical transmittance spectra of a soiled 
PV glass coupon (versus clean glass) measured on three different days in Ja�en, 
Spain [3]. The average values of the transmittance (dotted lines), τbðtÞ, and the 
transmittance values at 0.6 μm (dashed lines) are also plotted as horizon
tal lines. 
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denominator of Eq. (2). In the absence of other optical losses, the 
product, τðλ; tÞ⋅SRðλÞ is the ideal external spectral response of a soiled PV 
module. The transmittance loss at each wavelength is 1 � τðλ; tÞ. If a 
constant soiling transmittance profile is assumed, of value τx(t), the 
soiling ratio takes on the same value as the transmittance, rsðtÞ ¼ τxðtÞ. 
The broadband (average) transmittance at a particular time is τbðtÞ, 
which for convenience will be shorted to τb. 

Optical sensors take a single measurement and thus neglect the 
wavelength dependent effects of soiling, together with the different 
spectral responses possible for the various types of PV absorber mate
rials. In reality, the spectral profile of the transmittance due to soiling 
changes depending on the amount and the type of soiling deposited, 
which varies from site to site and can also vary with time at the same site 
[15]. In general, the transmission of light due to soiling has a gradually 
increasing spectral profile [3–5], with larger losses in the blue region, as 
is shown in Fig. 1. In our previous study [3], we demonstrated that a 
transmittance measurement at a single wavelength or the use of an 
average transmittance can be successfully used to identify the soiling 
profile trends over time with extreme accuracy (R2 > 0.99). Each PV 
absorber material (PV technology) had a preferred wavelength at which 
the measurement returned the lowest error. For example, the trans
mittance at 0.6 μm was found to be optimal for m-Si and p-Si. Those 
measurements are able to rank the severity of soiling and to differentiate 
between high and low soiling conditions. Despite that, the actual soiling 
loss calculation can still be subjected to a bias if the spectral trans
mittance profile of soiling was not flat (see Fig. 1), which can have 
varied effects on different PV materials and can change under specific 
irradiance conditions. Because of its shape, taking the spectral profile 
into account can significantly improve the soiling detection and reduce 
the error, making it possible to adjust the estimation of the electrical 
impact of soiling according to the PV material and the irradiance 
conditions. 

PV modules can be made of different PV absorber materials, each 
having different spectral behaviours. The spectral behaviour of a PV 
module is established, in part, by its bandgap and is described by its 
spectral response, which expresses the ratio between the current pro
duced by the PV absorber material and the incident power density at a 
given wavelength. This means that the same amount of soiling deposited 

on the PV module’s cover glass, with the same transmittance profile, can 
lead to different losses for each PV material [3–5]. Additionally, sunlight 
does not have a constant irradiance spectrum. Instead, it is made up of 
photons of different energies with various intensities. Also, the atmo
sphere, depending on the climatic conditions and the position of the sun 
in the sky, can selectively absorb some photons and thus affect the 
spectral distribution of the irradiance reaching the PV modules. There
fore, to estimate the PV power production with the maximum accuracy, 
it is essential to take into account both the irradiance hitting the PV 
material and the PV material’s spectral response. Due to the spectral 
characteristics of its transmittance profile, soiling affects the solar irra
diance and changes the spectral distribution reaching the PV solar cell 
encapsulated in the module. Therefore, the same amount of soiling can 
produce different losses, even for the same PV absorber materials, 
depending on the input spectral irradiance. 

An example is shown in Fig. 2, where the effect of the same soiling 
transmittance shown as Measurement A in Fig. 1 is modelled using Eqs. 
(1) and (2) for two silicon-based PV materials under two different 
irradiance conditions. These materials are m-Si and a-Si. Prior work [3] 
established that the optimum single-value wavelength for the mea
surement of soiling for m-Si devices is 0.6 μm. For the relative hemi
spherical transmittance indicated as A, the transmittance loss at 0.6 μm 
is 2.0%. Measurement A yields an average transmittance loss of 2.7%, 
but, from the soiling ratio of Eq. (2), can cause electrical losses between 
1.9% and 2.9%, depending on the irradiance and the PV material (see 
Fig. 2). This means that, in this case, assuming an electrical output 
power loss for a soiled PV module equal to a transmittance loss can result 
in a large relative error. It is important to mention that this error is 
expected to grow as the broadband (average) transmittance loss in
creases. This expectation is due to the fact that, as shown in previous 
works [3–5,16], the difference between losses at short and long wave
lengths tends to increase with the severity of soiling (from low to high 
soiling conditions). 

The aim of this work is investigating methods that can be used to 
model the full spectral transmittance and that can be used to calculate 
the soiling loss for PV modules of different materials. These results can 
find immediate application in the field of soiling monitoring to improve 
the current optical soiling detection technologies, which are gaining 

Fig. 2. Soiling losses recorded for Measurement A 
(shown in Fig. 1, with an average transmittance loss 
of 2.7%) for m-Si and a-Si cells under red-rich or blue- 
rich irradiance conditions. Each plot shows the 
spectral response (left axis), the irradiance and the 
generated current (right axis) for a different combi
nation of irradiance and PV material. The shaded area 
is the integral in the numerator of Eq. (2). (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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market interest, because of their low cost and good accuracy, but are 
currently not able to differentiate the impact of soiling on different 
modules and in different irradiance conditions. The ability to correct the 
soiling estimation for different PV technologies will also represent an 
improvement compared to traditional soiling stations [8,17], which are 
only able to quantify soiling occurring for the PV absorber materials that 
are used for their soiled and reference modules. 

In the next sections, the experimental methods are described that 
were used to collect and analyse the necessary transmittance data so that 
a determination can be made using Eq. (2) regarding optimal single and 
multiple wavelength values for several key photovoltaic technologies. 

3. Materials and methods 

3.1. Transmittance measurements 

The same experimental soiling transmittance profiles described 
previously [3] have been employed in this work. The data was collected 
from PV glass samples soiled outdoors under natural conditions. One 
Diamant® low-iron glass coupon 4 cm � 4 cm in size and 3 mm thick 
from Saint-Gobain Glass was mounted from January 2017 to January 
2018 on the roof of the A3-building at the University of Ja�en (Spain). 
The coupon was never intentionally cleaned, but rain and dew partially 
cleaned it from time to time. Its hemispherical transmittance was 
measured weekly within a wavelength range between 0.300 and 1.240 
μm, at 0.0025 μm steps, using a Lambda 950 spectrophotometer with a 
60-mm-diameter integrating sphere at the Center of Scientific-Technical 
Instrumentation (CICT) of the University of Ja�en. The technicians at the 
CICT, who follow the calibration routines indicated by the manufac
turer, constantly maintain the spectrophotometer. The weekly hemi
spherical transmittance of the soiled glass coupon was compared with 
that of a clean coupon, stored in a dust-free box. All the transmittance 
profiles due to soiling discussed and shown in this work are obtained as 
follows, to remove the effect of the glass transmittance: 

τðλÞ¼ τsoilðλÞ
τref ðλÞ

(3)  

where τsoilðλÞ and τref ðλÞ are the weekly measured spectral trans
mittances of the outdoor-mounted coupon and of the clean coupon, 
respectively. The transmittance loss at a given wavelength can be 
calculated as 1 � τðλÞ. 

The present dataset consists of 34 τðλÞ measurements, collected over 
48 weeks. The data shown in this work starts from those measured in the 
third week of the data collection, here labelled as “week 1”. Some 
weekly measurements are missing because they were not taken, or 
because the transmittance data was too noisy. Maximum and minimum 
weekly average soiling transmittances of 1.000 and 0.926 were experi
enced, with rainfalls and stochastic events affecting the soiling loss 
profile, as detailed previously [3]. The University of Ja�en is located in 
Ja�en (latitude 37�490N, longitude 3�480W, elev. 457 m), a high solar 
insolation location in Southern Spain (>1800 kWh/m2/year). Extended 
dry summer seasons, occasional dust storms from the Sahara Desert and 
periodic burnings of olive tree branches, from extensive local groves, 
can expose the PV modules to high soiling losses. A description of the 
weather and soiling conditions experienced during the data collection 
has been already reported [3,6]. 

It is important to mention that the value of the average transmittance 

ðτbÞ is strongly affected by the wavelength limits that are adopted in the 
calculation. Table 1 shows the effect of the selection of the lower limit in 
the calculation of the average transmittance for Measurement A (shown 
in Fig. 1 and used in Fig. 2). As can be seen, depending on the lower limit 
for the value of λ1, the average transmittance value might approach the 
expected soiling ratio for a specific PV technology and move further 
from the expected soiling ratio for another PV technology. In this work, 
the average transmittance is calculated for the range 0.3–1.1 μm. This is 
the typical range of spectrophotometers and spectroradiometers. 

3.2. Spectral transmittance models 

The spectral models, which are described below, are compared with 
three single wavelength value models:  

� Broadband (average) Transmittance (τb): the transmittance profile is 
assumed to be flat, with a value equal to the simple average of the 
spectral transmittance.  
� Transmittance at 0.55 μm (τ0.55): the transmittance profile is 

assumed to be flat, with a value equal to the transmittance measured 
at a wavelength of 0.55 μm.  
� Transmittance at the optimal wavelength (τopt): the transmittance 

profile is assumed to be flat, with a value equal to the transmittance 
measured at the wavelength that returns the lowest error. The 
optimal wavelength of each material is selected according to the 
results shown in the previous study [3]. 

Two multi-variable models have been investigated in this work to 
replicate the spectral profile of the transmittance due to soiling, and are 
described in the following sub-sections. The first model is sourced from 
the literature and, the second one is derived from the latter. Both models 
make use of one exponential function and of a number of variables. In 
order to distinguish them in the paper, they have been named according 
to the number of variables they employ. 

3.2.1. Three-variable single exponential (3v1e) 
The 3v1e equation has recently been utilized to model the spectral 

transmittance of soiling on glass [2]. The empirical equation, inspired by 
the Ångstr€om turbidity equation [18], was successfully utilized in the 
spectral analysis of soiling collected outdoors on PV glass coupons at 
seven locations worldwide. It is expressed as, 

Table 1 
Average transmittance losses, 1 � τb, for Measurement A (Fig. 1), depending on the minimum wavelength considered. The maximum wavelength is fixed to 1.1 μm. The 
soiling losses estimated for the given transmittance spectrum are shown in Fig. 2: 1.9–2.1% for a m-Si cell and 2.8–2.9% for an a-Si cell.  

Minimum Wavelength [μm] 0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500 

Average Transmittance Loss/% 2.7% 2.6% 2.4% 2.3% 2.1% 2.1% 2.0% 1.9% 1.8%  

Fig. 3. Fits obtained using Equation (4) for the representative hemispherical 
transmittance spectra shown in Fig. 1. 
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τðλÞ¼ eð� β�sur ⋅λ� α� Þ þ γ� (4)  

where τðλÞ is the spectral transmittance at a wavelength λ (expressed in 
μm) and α*, β*

sur and γ* are wavelength independent variables. It was 
suggested that β*

sur represents both the mass of particles per unit area on 
the glass surface and the strength of forward scattering of those parti
cles, α* relates to the size of the particles and γ* is an offset correction 
parameter, needed to consider mechanisms taking place when particles 
are deposited instead of suspended. For example, measurement A in 
Fig. 1 (τb ¼ 0.973) is fit to α* ¼ 2.954, β*

sur ¼ 0.002 and γ* ¼ � 0.012, 
with an R2 ¼ 0.988. Fits for the spectral profiles shown in Fig. 1 are 
reported in Fig. 3. Counter-intuitively, it was previously found that the 
analysis of the mass, size or composition of the deposited particles was 
not required to make use of this empirical approach for natural soiling 
[2]. The likely reason for this is that while the reflectance of thick layers 
of dust can exhibit a spectral shape representative of its chemical 
composition, the forward scattering and transmittance for disperse and 
isolated particles on a transparent substrate is more strongly dependent 
on the spectral characteristics of the Mie scattering of the particles. In 
the analysis that follows, the three variables for the 3v1e method can 
therefore be determined by fitting the measured transmittance at three 
distinct wavelengths. 

3.2.2. Two-variable single exponential (2v1e) 
In the same paper [2], direct correlations between the variables were 

found. One connected β*
sur to the broadband (average) transmittance, τb 

(R2 ¼ 0.99). Another correlation was between γ* and τb (R2 > 0.99). 
These are, 

τb¼ � 10:99⋅β�sur þ 1:01 (5)  

τb¼ 1:30⋅γ� þ 1:00 (6) 

This finding seems to suggest that β*
sur and γ* could be correlated, 

reducing the number of input parameters from three to two. A combined 
equation can therefore be written as, 

τðλÞ¼ eð� β�sur ⋅λ� α� Þ � 8:45 ⋅ β�sur þ 0:01 (7)  

where the term γ* is replaced with the expression � 8:45⋅β*
sur þ 0:01. 

Compared to the previous model 3v1e, this equation requires one less 
variable. The same correlation, with a slight difference in the value of 
the slope, can be found if the β*

sur and γ* data from Table 2 of previous 
work [2] are directly plotted, as shown in Fig. 4. Analogous to the 3v1e 
case, τðλÞ is the spectral transmittance at a wavelength λ (expressed in 
μm) and α* and β*

sur are wavelength independent variables. It should be 
noted that the range for the values in Fig. 4 is quite large and represents 
both high and low soiling locations. For the 2v1e work, the relationship 
in Eqn. (7) and the results of Fig. 4 allow for the determination of the 
values for all of the variables by fitting the transmittance data at two 
distinct wavelengths. 

3.3. Irradiance, spectral response and soiling ratio 

As in previous work [3], six representative PV materials have been 
considered. Their spectral response profiles are shown in the upper plot 
of Fig. 5. These are examples of spectral response curves for the different 
PV materials, and were sourced from previous studies [19–21]. In the 
bottom plot of the same figure, the three spectral irradiances considered 
in our analysis are shown. These have been selected to represent 
different conditions: the AM1.5 global irradiance, reference, spectrum 
(ASTM G173-03 standard), a blue-rich spectrum and a red-rich spec
trum. The reference spectrum has been sourced from an open source 
database [22], while the last two spectra have been generated through 
the SMARTS radiative transfer model [23]. The IEC 61724-1 standard 
that covers soiling measurements states the test should be performed at 
during �2 h window around local solar noon for fixed systems and at 
times when the angle of incidence is < 35� for tracked systems [13]. 
Given the atmospheric conditions found at a wide range of latitudes and 
seasons, one can expect that the solar spectra incident on a PV module 
will vary widely for soiling measurements in the field. 

The variables provided as input to the model to generate the 

Table 2 
Characteristics of the irradiance spectra used in this work. The Average Photon 
Energy has been calculated between 0.3 μm and 1.1 μm at 0.01 μm steps.  

Irradiance Air 
Mass 

Aerosol Optical 
Depth at 0.5 μm 
[cm] 

Precipitable 
Water [cm] 

Average 
Photon Energy 
[eV] 

Reference 
Spectrum 

1.5 0.084 1.42 1.85 

Blue-Rich 1.0 0.100 4.00 1.91 
Red-Rich 5.0 0.400 1.25 1.74  

Fig. 4. The correlation between β*
sur and γ* from Table 2 of prior work that 

examined soiling at 7 locations worldwide [2]. 

Fig. 5. Normalized Spectral Response of the six PV materials (top chart) and 
the normalized profiles of the three irradiances (bottom chart) considered in 
this work. The normalized spectral responses are representative for each ma
terial and were sourced from previous studies [19–21]. 
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Fig. 6. MAE and ME comparing the measured spectral transmittance with the flat transmittance profiles modelled using the average transmittance (τ avg), with the 
transmittance at 0.55 μm (τ0.55) and the transmittance at the optimal wavelength (τ opt) approaches, and with the spectral transmittances modelled using the three- 
variable single exponential (3v1e), and the two-variable single exponential (2v1e) methods. 

Fig. 7. MAE returned by each model depending on the characteristics of the transmittance spectra for each week of data collection. The minimum transmittance 
represents the minimum value that each weekly spectrum reaches. The Waveband Specific Transmittances in the Ultraviolet (WSTUV), in the Visible (WSTVIS) and 
Near Infrared (WSTNIR) are calculated by using Eq. (10), according to the waveband limits reported in the prior study [3]. Plots on the same row share the same 
y-axis, and plots on the same column share the same x-axis. 
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irradiance profiles are shown in Table 2, along with each spectrum’s 
Average Photon Energy (APE) [24,25]. This index describes the sun
light’s chromatic distribution, with higher APE values corresponding to 
“blue-richer” spectra while lower APE values corresponding to 
“red-rich” spectra [26]. In this study, the APE has been calculated for 
wavelengths between 0.3 and 1.1 μm, the same waveband employed for 
all the spectra investigated in this study, at steps of 0.01 μm. The whole 
analysis is conducted considering the PV modules at a fixed reference 
temperature. 

3.4. Metrics for the evaluation of the fit to models 

The curve fitting has been performed through the curve_fit function in 
the SciPy library for Python 2.7 [27], which uses nonlinear least-squares 
with a Trust Region Reflective algorithm. The initial guesses and the 
boundary conditions for each variables were set according to those re
ported previously [2]. The maximum number of iterations allowed for 
fitting was 100,000. The quality of the models investigated in this work 
has been assessed using the mean absolute error and the mean error. 

The mean absolute error (MAE) expresses the average value of the 
absolute errors between the measured and modelled data. It is 0.0% if 
the modelled data have the same values of the measured data; otherwise, 
it rises depending on the number and the magnitude of the errors in the 
prediction. The MAE, expressed as a percentage, is obtained as, 

MAE ​
�

%¼
100
n
Xn

i¼1

�
�Zmod;i � Zmeas;i

�
� (8)  

where Zmod;i and Zmeas;i are the ith-pair of modelled and measured data, 
and n is the total number of pairs. 

The mean error (ME) expresses the average value of the errors be
tween the measured and modelled data. It provides information on the 
systematic bias in the models; it is positive or negative depending if the 
modelled data, respectively, overestimates or underestimates the values 
of measured data. A ME of zero is due to the lack of a systematic bias, but 
does not necessarily express a perfect correlation between measured and 
modelled data. The ME is obtained as, 

ME ​
�

% ¼
100
n
Xn

i¼1
ðZmod;i � Zmeas;iÞ (9)  

4. Spectral transmittance modelling 

4.1. Performance of the models 

The models listed in Section 3.2 have been tested to assess their 
ability to reproduce the spectral profiles of the 34 transmittance mea
surements taken during the data collection period. For each week, a 
number of simulated transmittance profiles were generated by using 
both the flat and the spectral models and these were then compared with 
the measured transmittance spectrum due to soiling. The errors found in 
the estimation of each week’s spectral transmittance profiles were 
calculated from Eqs. (8) and (9) and are shown in Fig. 6. 

As expected, using a spectral model can significantly reduce the error 
in the estimation of the spectral transmittance. In particular, the three- 
variable single exponential spectral model is found to consistently return 
the best correlations, with a maximum MAE below 0.5%, for hemi
spherical transmittance losses ranging between 0.0% and 7.4%. Using 
two variables instead of three produces slightly larger errors, up to 0.7% 
MAE. 

On the other hand, assuming a flat transmittance profile can produce 
significant errors (up to 3.4% MAE), especially in conditions of higher 

soiling. For the given dataset, a single wavelength measurement returns 
lower absolute errors than the average transmittance value, even if it is 
exposed to a systematic over-estimation of the transmittance (and 
under-estimation of the losses) as proved by the high positive ME values. 
The optimal wavelengths range between 0.6 and 0.8 μm, in the region of 
the spectra where the losses are at a minimum. It is interesting to 
mention that this approach limits the MAE, but produces the largest ME 
(i.e. the largest over-estimation of the transmittance and the largest 
under-estimation of the losses). 

These aspects can be explored further by looking at the errors for the 
transmittance data from each week, and how this depends on the 
characteristics of the transmittance spectra. This is shown in Fig. 5. The 
minimum transmittance in the first row represents the minimum value 
that each weekly spectrum reaches (typically near 0.3 μm). From the 
first row of Fig. 7, we see that the MAE values for the all the methods are 
found to be the highest for those transmittance spectra that have the 
lowest minimum transmittance values. This means that, among the 
spectral transmittance profiles shown in Fig. 1, weeks 10 (B in Figs. 1) 
and 34 (A in Fig. 1) record the highest MAEs (with minimum single 
value transmittances of 0.907 and 0.909, respectively), while week 27 
(C in Fig. 1) returns the lowest MAEs (with a minimum single value 
transmittance of 0.988). This correlation between error and minimum 
transmittance value becomes more significant for the flat models (first 
three columns of Fig. 7); in these cases, the error varies by one order of 
magnitude more than for the spectral models. This is due to the fact that 
flat models do not take into account the increased amount of losses 
occurring in the blue region. 

This result is confirmed if, for each transmittance spectrum in the 
dataset, the average spectral transmittance of each waveband (UV, 
visible and near infrared) is compared to the broadband transmittance 
(i.e. the average transmittance across the whole spectrum). This is done 
through the Waveband Specific Transmittance (WST), which expresses 
the ratio between the average spectral transmittance of a waveband i 
and the broadband transmittance, calculated as, 

Fig. 8. Average MAE for the two-variable single exponential (2v1e) model over 
the various weeks of the experimental investigation. These considered two 
wavelengths as input. The contour plot is created from a 0.05 μm � 0.05 μm 
grid and is mirrored on the diagonal. Combinations where the two wavelengths 
are the same are shown in white. The best result is for a wavelength pair of 
0.35 μm and 0.85 μm. Any MAE �1.0% is coloured in red. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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WSTi ¼

R λ2i
λ1i

τðλÞ⋅dλ
.

ðλ2i � λ1iÞ
R 1:1 μm

0:3 μm τðλÞ⋅dλ
.

ð1:1 μm � 0:3 μmÞ
(10)  

where λ1i and λ2i are the shortest and longest wavelengths of the i-th 
waveband. According to its definition, it has a value < 1 (<100%) if the 
transmittance of the i-th waveband is lower than the broadband trans
mittance and has values > 100% otherwise. The smaller its value, 
therefore, the more the losses are in the specific waveband. For the 
analysed dataset, the plots reported in the last three rows of Fig. 7 show 
that for more losses incurred in the UV (i.e. the smaller WSTUV), the 
larger the mean absolute errors, especially for flat transmittance profile 
approaches. On the other hand, for more losses incurred in the near 
infrared (i.e. the smaller WSTNIR), lower errors are expected. One should 
note that for the last two columns of Fig. 5, the x-axis scale decreases 
dramatically. 

4.2. Optimal combinations of measurements 

In the previous section, we have shown how the use of spectral 
models can improve their utility as replacements for the full, measured 
soiling transmittance profiles. These models are based on two or three 
variables, which means that the full transmittance spectrum for soiling 
can be modelled by measuring the transmittance at only two or three 
wavelengths, respectively. In this section, we aim to understand which 
combinations of wavelengths can be used to model the transmittance 
spectra due to soiling with the highest accuracy. As a first step, each 
week’s transmittance profile has been modelled by using the trans
mittance measured at a number of wavelengths equal to the number of 
each model’s variables. Wavelengths between 0.30 μm and 1.10 μm 
have been considered, at steps of 0.05 μm. The results from all of the 
transmission curves of the study were combined. The results show the 
mean MAEs, obtained as an average of the MAEs calculated for each of 
the 34 transmittance curves, following these steps: 

Fig. 9. Average MAE for the three-variable single exponential (3v1e) model over the various weeks of the experimental investigation. These considered three 
wavelengths as input. The contour plots are created from 0.05 μm � 0.05 μm grids and are mirrored on the diagonal. Combinations where at least two wavelengths 
are the same are shown in white. As one can see from the deeper blue region of the 0.5 μm (upper right) plot, the best result is for the combination: 0.35 μm, 0.50 μm, 
and 0.85 μm. Any MAE �1.0% is coloured in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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1. Each transmittance curve is modelled and a MAE is calculated.  
2. The average of the MAEs is calculated. 

Fig. 8 shows the average MAEs when two transmittance values are 
provided to the two-variable single exponential (2v1e) model. The 
lowest errors are found if the transmittance is measured at 0.35 μm for 
one of the wavelengths and between 0.7 μm and 1.0 μm for the second 
wavelength. In general, the worst results are found for combinations of 
wavelengths where both are greater than or equal to 0.70 μm. Also, the 
use of consecutive wavelengths (e.g. 0.35 μm and 0.40 μm or 0.50 μm 
and 0.55 μm) should be avoided. 

For the three-variable single exponential (3v1e) model, it was found 
that all but four weeks yielded a fit to Eqn. (4) with an R2 > 0.95, thus 
further validating our empirical approach. In the analysis that follows 
for 3v1e, three wavelengths were provided for the fit to that equation. 

The average MAEs found for each possible combination are shown in 
Fig. 9. In this case, the minimum MAE can be lowered to less than 0.2%, 
with the best results returned for a combination of these wavelengths: 
0.35 μm, 0.45–0.50 μm and 0.85–0.95 μm. A measurement at 0.35 μm is 
still found to be essential to minimize the error, because it makes it 
possible to correctly model the attenuation in the UV. The addition of an 
intermediate wavelength makes it possible to improve the fit, because of 
the noticeable drop in transmittance from the green to the blue and UV 
regions (as shown in Fig. 1). Two value combinations of low and me
dium wavelengths (�0.70 μm), as well as combinations of medium and 
high wavelengths (�0.50 μm), should be avoided. 

5. Optical detection of the soiling ratio 

5.1. Soiling ratio estimation 

In our previous work [3], it was shown that it is possible to estimate 
the soiling losses from single value transmittance measurements and it 
was also concluded that each PV material had a specific wavelength at 
which the error was minimized. In this work, we aim to further lower the 
error in the soiling estimation by modelling the full soiling transmittance 
spectrum through a limited number of measurements. In the previous 
section we proved how it is possible to model a full transmittance 
spectrum using a limited number of single-value measurements (� 3). 
Using Eq. (2), we can then use these spectra to estimate the soiling losses 
incurred by different PV materials under several irradiance conditions. 

Fig. 10 shows the error in the estimation of the soiling ratio when 
each model is used for different PV materials under three different 
irradiance conditions. As can be seen, the largest errors are found if a 
constant transmittance is assumed. The magnitude of the error is 
dependent on the spectral distribution of the irradiance. The errors are 
higher for lower energy gap materials (Si, CdTe) under conditions of red- 
rich spectra, where their spectral response is at maximum, and, simi
larly, the errors are larger for larger energy gap materials (a-Si, perov
skite) for conditions of blue-rich spectra. This means that under 
conditions of favourable spectral irradiance for each material, the error 
in the estimation of the soiling ratio is at maximum. 

On the other hand, the spectral models always return among the 
lowest errors, independently of the conditions. Indeed, the spectral 
transmittance models are found to be more robust to a change in the 
irradiance spectrum. The use of the spectral transmittance models is 
found to be particularly important for low and intermediate energy 
materials, because of their extended absorption band, which goes from 
the strongly affected blue wavelengths to the less impacted longer 
wavelengths. It should be noted that the plots for p-Si and CIGS are not 
shown, as the results are similar to those found for m-Si, since they all 
have very similar small bandgaps. 

As was discussed in connection with the first two rows of Fig. 7, the 
errors are found to increase with the severity of soiling. Comparing the 
left and right columns of Fig. 10, noting the change in the x-axis scales, 
this can also be seen. This suggests that the errors in soiling ratio pre
dictions based on a flat transmittance assumption (using a single-value 
measurement) can also be erroneous in locations or seasons with 
extreme soiling. 

Our previous work [2] analysed the data obtained from glass cou
pons after eight weeks of soiling deposited outdoors at seven sites 
worldwide. We found that the shape of the relative transmittance 
spectra fit Eq. (4) and the 3v1e approach quite well. That finding gives 
us some confidence in hypothesizing that the conclusions from Fig. 10 
can be extended to other sites. Also reported in the prior work was that 
the broadband transmission (τb) for a soiled silicon PV device is equal to 
its predicted soiling ratio, with an error < 0.7%. While that is consistent 
with Fig. 10, the present study extends the result with a more extensive 
dataset from almost a year of outdoor exposure at a single site. It also 
strongly suggests caution in the use of single wavelength values, 
compared to the accuracy in the estimates for rs that can be achieved 

Fig. 10. MAE in the calculation of the soiling ratio, rs for the 46-week dataset, 
depending on the PV material, the irradiance, and the spectral modelling 
method used for τ. The optimal wavelengths recommended in the previous 
study [3] have been used for the τ opt method. The plots on each column have 
the same x-axis scale. Similar results are obtained for m-Si, p-Si and CIGS. For 
better readability, only the m-Si plots are shown. 
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using spectral models such as 2v1e and 3v1e. 

5.2. Specific optimization for key PV technologies 

In the previous section, we showed which combinations returned the 
lowest errors when the three-variable single exponential (3v1e) model 
was employed. In this section, we want to investigate if it is possible to 
further lower that error by using the two-variable equation and by 
tuning the wavelengths according to the PV material in use. Indeed, each 
PV material is able to work in a different absorption band. This means 
that the estimation of soiling might rely on modelling only a limited 
portion of the spectrum instead of the full spectrum. Therefore, it might 

be possible to identify combinations of wavelengths that optimize the 
soiling ratio estimation for the spectral absorption of a selected PV 
material. For this reason, the analysis described in the previous section 
has been repeated by taking into account each material’s specific ab
sorption band and the three irradiance spectra considered in this work. 
The results, plotted in Fig. 11, confirms that each material has a set 
wavelength that can optimize the modelling and that the combination 
varies according to the PV material and its spectral response. The 
combinations are found to only slightly vary depending on the charac
teristics of the spectral distribution of irradiance. 

Fig. 11 displays a summed error for all of the two wavelength com
binations used in the 2v1e spectral model. For each particular PV 

Fig. 11. Average MAE to estimate the soiling ratio for various PV materials and irradiance conditions, when the two-variable single exponential (2v1e) model is 
employed and the transmittance values at two indicated wavelengths are provided. Plots for p-Si and CIGS are similar to m-Si and are not shown. 
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material, it is possible to identify from our 34-week dataset at least one 
combination of two wavelengths that reduces the error that is found to a 
level lower than the case for the three-variable equation (3v1e). This 
was done for all three of the investigated irradiance conditions using the 
insights of Fig. 10. Within the results shown in Fig. 12, there are some 
noteworthy findings. PV absorber materials CdTe, amorphous silicon 
and perovskite have a common area of roughly rectangular shape. The 
optimal combinations obviously depend on the absorption characteris
tics of each PV material; amorphous silicon and perovskite require only 
low or intermediate wavelength combinations (� 0.8–0.9 μm), while 
low bandgap energy materials like silicon require combinations of 0.55 
μm and an IR wavelength (�0.85 μm). It should be pointed out that the 
classical Ångstr€om turbidity equation is routinely employed in atmo
spheric studies by using measurements from a Sun Photometer at two or 
three carefully selected wavelengths [28]. That equation formed the 
basis for Eq. (4) [2]. 

5.3. Robustness of the models versus measurement uncertainty 

So far, the present analysis has not taken into account how a trans
mittance measurement error can propagate in the estimation of the 
soiling ratio. In general, a �0.5% uncertainty at each wavelength is 
associated with the transmittance measurements made with a spectro
photometer [2]. The aim of this section is to quantify the robustness of 
each of the investigated methodologies to a random measurement error. 
For this reason, the previous analysis has been repeated for 1000 iter
ations, by adding a random error between � 0.5% and þ0.5% to the 
transmittance data for each wavelength. For each iteration, the differ
ence between the modelled average transmittance, where the models 
have had input data subject to the artificial perturbation errors, and the 
original average weekly transmittance has been calculated. 

Fig. 13 shows the results of this analysis, in terms of average error 
over the 46 weeks of investigation, iterated 1000 times each, under 
different irradiance conditions and for different PV materials. The errors 
are calculated as the absolute difference between the soiling ratio 
modelled from the artificial (random, erroneous) spectra, and the soiling 
ratio as calculated by using all the data points of the original non- 
manipulated transmission spectra. The spectral models return the 
lowest errors in most of the cases, compared to the flat transmittance 
profile approaches. This is particularly clear for low and intermediate 
energy gap materials, for which a single measurement is not enough to 

model the spectral behaviours over their extended absorption 
wavebands. 

On the other hand, the differences are similar for most of the models 
when a-Si and perovskite materials are considered; this is due to the 
limited range of spectral response (waveband) of these higher bandgap 
materials. In these conditions, the average transmittance is found to 
provide one of the best results, because the error is attenuated thanks to 
the larger number of data points considered with this approach. 

In general, the performance of the spectral models tends to improve 
under conditions of the reference and red-rich spectra. Overall, the 2v1e 
model, when fed with measurements at PV material-optimized 

Fig. 12. PV material’s optimized wavelength combinations that produce errors 
in the estimation of the soiling ratio for the two-variable single exponential 
(2v1e) model that are lower than the errors found for the three-variable single 
exponential (3v1e) under the three irradiance conditions considered in this 
work. Each coloured area groups the combinations of a specific material. The 
figure is created from a 0.05 μm � 0.05 μm grid. 

Fig. 13. Boxplots representing the mean absolute errors (MAE) found after 
1000 iterations in which the soiling ratios, rs, are modelled by introducing a 
random error of �0.5%, at each wavelength, for the transmittance spectra used 
as input, compared to the soiling ratios calculated from the original spectra. The 
2v1e and the 3v1e approaches use the same wavelengths for all the PV mate
rials. The 2v1e* method uses optimized combinations of wavelengths for each 
PV material. Several key PV materials and three irradiance conditions are 
indicated. Outlier points are not shown. The plots on each row have the same y- 
axis scale. Plots for p-Si and CIGS are not shown. 
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wavelengths, is found to return the lowest errors in all the cases. It is 
important to mention that this 2v1e* approach would optimize the 
performance for a single PV material only, as different wavelength 
combinations are required for each of the various PV materials. Other
wise, if multiple PV technologies need to be investigated with one 
soiling sensor, the other two spectral models should be utilized. 

5.4. Errors for larger soiling ratios 

We turn our attention back to Figs. 1 and 2, to examine the errors in 
soiling ratio estimates when single wavelength approaches are used. As 
discussed in the presentation of Figs. 5 and 8, these are expected to grow 
as the broadband (average) transmittance loss, ð1 � τbÞ, due to soiling 
increases. As a specific example, the analysis shown in Fig. 2 can be 
applied to week 34, case A shown in Fig. 1, and week 23, which has a 
higher average transmittance loss. The results are summarized in 
Table 3. One can see that using the optimal wavelength [3] for m-Si (0.6 
μm) is reasonable for both weeks. One can also see for the same PV 
material (m-Si) that the error between ð1 � τoptÞ and the soiling loss 
values in the table can indeed be larger when the transmission losses are 
greater. Also apparent is that the use of the same wavelength for another 
material (a-Si) is not warranted and that, again, the absolute difference 
in soiling loss between blue and red irradiance is larger for the case of 
heavier soiling. 

It is therefore clear from this example – and from the analysis pre
sented throughout this work – that the use of spectral models and the 
techniques which we have applied to a particular location in southern 
Spain should be repeated for other sites with diverse climates and varied 
soiling conditions. Concurrently, the empirical relationships of Eqs. (4)– 
(6) should also be further validated using other datasets. In addition, 
further experimental work should be carried out to correlate the esti
mated soiling losses to those measured using PV modules in the field. 
These studies can lead to the creation of better monitoring equipment to 
establish power losses due to soiling. 

6. Conclusions 

Monitoring soiling is an essential task to minimize the losses of PV 
systems deployed worldwide, while limiting the operation and mainte
nance costs. In order to limit the installation and operation costs, the 
soiling sensor market has been moving toward maintenance-free optical 
soiling detectors that measure the transmittance of soiling to quantify 
the soiling losses occurring on a PV system. Some commercial soiling 
sensors currently available are based on a single optical measurement, 
which can give a good estimate of the soiling trends, but do not consider 
the spectral profile of soiling and do not perform any correction based on 
the spectral irradiance distribution or the spectral response of the PV 
materials they are monitoring. In particular, the errors of single- 
measurement systems are expected to rise with the severity of soiling, 
due to the larger soiling loss occurring at shorter wavelengths. 

In this work, we investigated the possibility of estimating the soiling 
transmittance spectra using empirical spectral models and compared 
these to the use of single wavelength transmittance measurements. For 
the two spectral models studied, we identified optimal wavelength 

combinations that resulted in a minimization of the errors in soiling 
transmittance estimation. In general, better results were obtained when 
a three measurement model was employed, compared to a two mea
surement model. 

When used to estimate the soiling losses of different PV materials 
exposed to the same soiling under different irradiance conditions, the 
spectral models were found to perform significantly better than single- 
measurement approaches for most of the PV materials. It was also 
possible to further reduce the error in the estimation of the soiling ratio 
for the two-measurement model by optimizing the combinations of 
wavelengths depending on the PV absorber materials. These models 
have also been found to be more robust to transmittance measurement 
errors. In general, the utilization of spectral models is therefore bene
ficial, especially in high soiling conditions. 

From the analysis presented in this paper, one can conclude that 
optical techniques for monitoring the consequences of soiling in PV 
could be improved by utilizing two or three wavelengths to estimate the 
full transmittance spectra, rather than just one. This will make it possible 
to adjust the soiling measurement, not only to different irradiance 
conditions but also for different PV module materials. This would enable 
features currently lacking in both optical sensors and standard soiling 
stations. This study was conducted at a single location, and should be 
repeated for a larger number of locations experiencing more significant 
soiling losses. Future studies should analyse the time series of the 
transmittance data and soiling loss for each location by using Eqn. (4) 
and the methods described in this work. 
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Table 3 
Soiling losses, 1 � rsðtÞ, measured in weeks 34 and 23 for m-Si and a-Si under red- 
rich and blue-rich irradiance conditions.  

WEEK 34 WEEK 23 

Average Transmittance Loss: 2.7% Average Transmittance Loss: 4.7% 

Transmittance Loss at 0.6 μm: 2.0% Transmittance Loss at 0.6 μm: 3.1%  

m-Si a-Si  m-Si a-Si 

Blue-Rich Irradiance 2.1% 2.9% Blue-Rich Irradiance 3.1% 5.1% 
Red-Rich Irradiance 1.9% 2.8% Red-Rich Irradiance 2.8% 4.8%  
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