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LEAST DEVELOPED COUNTRIES (48)
Africa 34, Asia 9, Caribbean 1, Pacific 4
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Note: The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations.
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Country Date of Country Date of
inclusion inclusion
on the list on the list

1 Afghanistan 1971 25 Madagascar 1991
2 Angola 1994 26 Malawi 1971
3 Bangladesh 1975 27 Mali 1971
4 Benin 1971 28 Mauritania 1986
5 Bhutan 1971 29 Mozambique 1988
6 Burkina Faso 1971 30 Myanmar 1987
7 Burundi 1971 31 Nepal 1971
8 Cambodia 1991 32 Niger 1971
9 Central African Republic 1975 33 Rwanda 1971
10 Chad 1971 34 Sao Tome and Principe 1982
11 Comoros 1977 35 Senegal 2000
12 Dem. Rep of the Congo 1991 36 Sierra Leone 1982
I3 Djibouti 1982 37 Solomon Islands 1991
14 Equatorial Guinea' 1982 38 Somalia 1971
15 Eritrea 1994 39 South Sudan 2012
16 Ethiopia 1971 40 Sudan 1971
17 Gambia 1975 41 Timor-Leste 2003
18 Guinea 1971 42 Togo 1982
19 Guinea-Bissau 1981 43 Tuvalu 1986
20 Haiti 1971 44 Uganda 1971
21 Kiribati 1986 45 United Rep. of Tanzania 1971
22 Lao People's Dem. Republic 1971 46 Vanuatu' 1985
23 Lesotho 1971 47 Yemen 1971
24 Liberia 1990 48 Zambia 1991

http://www.un.org/en/development/desal/policy/cdp/ldc/idc_list.pdf




Photovoltaic Solar Electncnty Potentlal in the Medlterranean Basin, Afnca, and Southwest Asia
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A useful scale

Yearly sum of global solar irradiation incident on optimally-inclined equator-oriented photovoltaic modules
Units: kWh/m?2/year

Global irradiation [KWh/im<]
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Solar electnoty (AWHAW e

Yearly sum of solar electricity generated by 1 kWp system with optimally-inclined equator-
oriented photovoltaic modules and system performance ratio = 0.75. Units: kWh/kWp

Source: Huld T., Sari M., Dunlop E., Albuisson M, Wald L (2005). Integration of HelioClim-1 database into
PVGIS to estimate solar electricity potential in Africa. Proceedings from 20th European Photovoltaic Solar
Energy Conference and Exhibition, 6-10 June 2005, Barcelona, Spain, http://re.jrc.ec.europa.eu/pvgis/

File:PVGIS Africa Solar Potential
https://commons.wikimedia.org/wiki/File:PVGIS_Africa_SolarPotential_img_v2.png



Photovoltaic Geographical Information System - Interactive Maps
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Solar disinfection for drinking water treatment
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Semiconductor photocatalysis to produce hydroxyl radical, dye
photosensitization to produce singlet oxygen, UV irradiation using LED
powered by a photovoltaic panel, distillation using a solar still, and solar
pasteurization.

Jeon, |., Ryberg, E.C., Alvarez, P.J.J. et al. Technology assessment of solar disinfection for
drinking water treatment. Nature Sustainability (2022). DOI:10.1038/s41893-022-00915-7,
https://www.nature.com/articles/s41893-022-00915-7



Solar steam generation by heat localization

* Bulk liquid at low temperature
 Low optical concentration
« Solar thermal efficiency up to 85%

- at only 10 kW/m?
= « 64% at 1000 W/m? (one sun)
: « Graphite-based:
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Figure 1| Double-layer structure. (a) A representative structure for
localization of heat; the cross section of structure and temperature

Ghasemi, H., Ni, G., Marconnet, A. et al. Solar steam generation by heat
localization. Nature Commun. 5, 4449 (2014). https://doi.org/10.1038/

ncomms5449



Photovoltaics

There are now a diversity of form factors and
products

Floating PV

Integrated Photovoltaics — Areas for the Energy Transformation
https://www.ise.fraunhofer.de/en/key-topics/integrated-photovoltaics.html
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Some examples of Agrisolar systems

Sun’Agri Jack’s Solar
system over Garden -
Grapes I Uses trackers
(France) (US)

System for New:
growing glass PV
vegetables ESSREIIEE: =T \m\\w\\\\\\muuﬂlll/////x// v | tubes

(US) WA ‘ ' (US,

Background: https://www.nrel.gov/news/program/2022/growing-plants-power-and-partnerships.html



Performance of PV tube solar (US)

+25% energy per Watt from sun tracking
+5% energy from reduced soiling
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Source: Dr. Christopher Barnes, email: chris@takasolar.com



average module sales price [USD 2021/Wp]
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PV module costs (history)
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Professor Dr. lvan Gordon,

Status of crystalline-silicon PV
technology,

DAY 13, PART-2 Virtual Learning
University (VLU)

Online Opening Lectures - Academic
Year 2021-2022

Saturday, October 30, 2021

URL: https://www.youtube.com/watch?
v=_Z41x4dcAGg

Courtesy of Prof. Dr. Ahmed Ennaoui,
Morocco

Copyright © 2021 vluplatform.net

0.25$ / Wp

Source: ITRPV roadmap, 13t edition, March 2022
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Making jet fuel from sunlight and air

Demonstrated the operation of the entire thermochemical solar fuel production chain,
from H,O0 and CO, captured directly from ambient air to the synthesis of drop-in
transportation fuels (for example, methanol and kerosene), with a modular 5 kW
thermal pilot-scale solar system operated under field conditions. (ETH, Zurich)

Remo Schappi, Aldo Steinfeld, et al. Drop-in Fuels from Sunlight and Air. Nature, 2021;
DOI: https://doi.org/10.1038/s41586-021-04174-y
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Solar Evacuated (thermal) Tube Array vs. Flat Panel
Solar Water Heating

Works well in cold climates

Source: https://www.sciencedirect.com/topics/engineering/evacuated-tube-collector
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Solar Heat

ESTIF

Energizing Europe with
Solar Heat: A Solar
Roadmap for Europe

Compare with
REPowerEU: affordable,

secure and sustainable
energy for Europe
* Heat is important

(Levelised Cost of Energy) per kWh for different Energy Sources
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https://solarthermalworld.org/wp-content/uploads/2022/06/Solar-Thermal-Roadmap-2030.pdf
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Soiling
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Immediate Actions

Klemens llse, Leonardo Micheli, et al., Techno-Economic Assessment of Soiling Losses and Mitigation Strategies for Solar
Power Generation, Joule, Volume 3, Issue 10, 2019, Pages 2303-2321. https://doi.org/10.1016/j.joule.2019.08.019. 19



Soiling: Definition

Accumulation of dust, dirt and particles on
the surface of PV modules or CSP mirrors.

Drop in power output: can be > 50%.
Drop in energy yield: O to 6% in the U.S.
4 to 7% loss in 2023.

=>» 4 to 7 billion € lost! in 2023.

1. The 3-5 billion € loss due to soiling was calculated for a cost of electricity of 0.03
€/kWh. The cost in Europe now is approx. 10 times higher, so we are probably facing
higher losses than forecasted, at least for the EU.
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Klemens llse, Leonardo Micheli, et al., Techno-Economic Assessment of Soiling Losses and Mitigation Strategies for Solar Power
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Higher Elec. Prices Allow for More Frequent Cleanings.
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Value (NPV) depending on
both variable electricity price
and cost of cleanings for the
glass surface. The vertical
dashed line and the horizontal
dotted line show one example
for a cost of one annual
cleaning and the
corresponding electricity price,
respectively.

Source: Leonardo Micheli, et al., Economics of seasonal photovoltaic soiling and cleaning optimization
scenarios, Energy, Volume 215, Part A, 2021, 119018, https://doi.org/10.1016/j.energy.2020.119018.
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Soiling (CSP)

Cleaning Frequency - Power Purchase Price Analysis
T

600 T \
:(E:L?fanggvzzz:es Below, the range of electricity price that
s00- gives a balance between cleaning costs and
ool | extra revenues is shown for each number of
135 €/MWh monthly cleanings.
¥ 300 - |
90 €/MWh 200 !
200 - 180 [ ]
45€MWh | 160 .
100 - | § 140 .
uga{ 120 .
00 1 é 3 4 5 é 7 é ;) 1C % 100 | - .
Number of Cleanings g sl .
Each additional cleaning (monthly in this case) 8 ol []
provides less economical benefit, however, for wol [ ]
high enough electricity prices, a higher number of ZOJ
cleanings that improve the overall optical o
efficiency and hence the electricity generation is Cleanings
then prgfltable. In the ﬂgure. above is shown the Soiling model available on GitHub, https//github.com/
comparison between cleaning costs and extra cholette/HelioSoil
revenues obtained at different electricity prices. Tutorial paper in SolarPACES

Picotti, G., Binotti, M., Cholette, M.E., Borghesani, P., Manzolini, G., Steinberg, T., 2019. Modelling the soiling of heliostats: Assessment

of the optical efficiency and impact of cleaning operations. AIP Conf. Proc. 2126, 3004. https://doi.org/10.1063/1.5117555
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Soiling Model (CSP)

Soiling model available on GitHub

. R N . Soiling model available on GitHub,
* https://github.com/cholette/ EEED) e o ~ - = https//github.com/cholette/HelioSoil

HelioSoil k : Tutorial paper in SolarPACES
* Tutorial paper forthcoming in =
SolarPACES (hopefully!)

° StOC h asti C m Od el n Ot yet i n HelioSoil: A Python Library f;;;:;;l;::;::uiling Analysis and Cleaning
there, but it will be soon

* Data from QUT experiments
is also up there

* Development is active and
will continue for some time

21 | SoilingLosses for Conosntrating Selar Power | Michael E Chelette

Prof. Michael Cholette, PhD, and Giovanni Picotti, Ph.D., Faculty of Engineering,
Queensland University of Technology, Papers (via QUT ePrints): http://eprints.qut.edu.au/view/person/

Cholette, Michael.ntml; ResearchGate: https://www.researchgate.net/profile/Michael _Cholette
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