

Cylindrical and Flat Solar Collector Geometries: Theory and Experiment

The Performance and Optics of the "Solyndra" PV Panel

R. John Koshel,^{1,2} Greg P. Smestad,³ Daniel Shull,⁴ Peter Stephens,⁴ and Tim Healy⁴

Photon Engineering, LLC
 College of Optical Sciences, The Univ. of Arizona
 Sol Ideas and Solar Energy Materials and Solar Cells
 Electrical Engineering Department, Santa Clara University

OSA SOLAR 2012 – Eindhoven, The Netherlands

Introduction

- Cylindrical solar cell tubes use thin-film CIGS technology:
 - Tracking not required
 - Ease of mounting, cooling, and cleaning
 - CIGS ~ 20% efficient
 - Wind loads reduced
 - Low roof penetration
- Significant media coverage of the technology:
 - How does it work?
 - Does it work well?
 - We are not interested in the politics (much)

Motivation

THINK AND A				
Phot	os by Greg I	P. Smestad		
SOLYNDRA Baged The spectrum	PMP VMP IMP Voc ISC Tolerance +/-4% Motioations at 1000 W/m², Ah tifled to UL 1703, ed.3; IEC (157 W 82.7 V 1.90 A 118.9 V 2.28 A A1.5 & 25°C Cell Temp 81646 ed.2, 61730-1 & -2	Solar Module Max. Sys. Voltage (UL1703) Max. Sys. Voltage (IEC) Max. Series Fuse Fire Rating Field Wiring: Use Copper ONU Insulated for a minumum of 90 LABEL NO. 0950-30291 R003	SL-150-157 600 V 1000 V 24.4 A CLASS C Y, 12 AWG Min C Made in USA

- Better understand the cylindrical tube technology:
 - What is the theory behind performance?
 - Does it work better than nontracking flat panels?
 - Can software modeling be used to accurate determine performance?
 - Can the technology be improved?
- Educational tool for undergraduate students at Santa Clara University

Santa Clara

Characteristics of Cylindrical Tube Panels

Based on the research of evacuated tubes

THEORY

Driving Reason for Cylindrical Tubes

Irradiance Ratio on Cylindrical Tubes

 E_D = irradiance on tilted cylindrical tubes from direct sunlight E_R = irradiance on tilted cylindrical tubes from backplane scatter E_0 = irradiance on flat panel normal to direct sunlight E = irradiance on horizontal flat panel from direct sunlight

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790008199 1979008199.pdf

Comparison: Cylindrical Array & Flat Panel

Santa Clara

University

Measurements and comparisons to theory

EXPERIMENT

They Look Like Flat Panels...

...and They Look Like Blinds

Edge-Ray Geometry of Cylindrical Tubes

Santa Clara

Universitv

Measured IV Curves for Solar Panels

m² based on footprint area. PV panels are horizontal.

Santa Clara

University

Comparing PV Module Power

nta Clara

Universitv

Not So Fast: It is Power Density

Labor Day SCU

First glance: flat panel (Solar Frontier) performs better than cylindrical tube panel (Solyndra)

Second glance: we are gaining some power from the open regions in the panel, but not doubling

Third glance: the kink is still there due to critical angle phenomenon

3 September 2012 Latitude = 37.3492° Longitude = -121.9381° Altitude = 20 m White-Panel Backplane

Comparison of Theory and Experiment

Experimental: Electrical Power Density

Theory: Irradiance Ratio

College of Optical Sciences

anta Clara

Universitv

anta Clara

University

Validation and optimization

SOFTWARE MODELING

Source Setup: NREL Solar Model

37.3492

On horizontal surface

-121.9381

20.0

3-Sep-12

12:30 AM

-8

1

0.5

1013

0.225

2

0.26

03 0.85

0.2

2

0.8

1

Note: irradiance on back surface of tube

Modeled Electrical Power Generation

Comparison of Solyndra cylindrical tube panel: experiment and ray trace model – good agreement.

Variations due to solar source assumptions, such as atmospheric conditions

Indicates that software raytracing model validates virtual design method.

> 3 September 2012 Latitude = 37.3492° Longitude = -121.9381° Altitude = 20 m White-Panel Backplane

Universitv

Photon

ENGINEERING

Illuminating Ideas

• Étendue is a geometric factor:

$$\mathcal{T} = n^2 \iint \cos \theta dA_s d\Omega$$

Étendue

• It describes the flux propagation characteristics of an optical system:

$$\Phi = \iint_{\text{aperture}} L(\mathbf{r}, \hat{\mathbf{a}}) \cos \theta dA_s d\Omega,$$

$$\underline{\text{Lambertian Source Radiance}} \\ \Phi = L_s \iint_{\text{aperture}} cos \theta dA_s d\Omega$$

$$=\frac{L_{s}}{n^{2}}$$

- Optimized configuration of the ' system:
 - Results indicate $d = 2D_6$ and $D_B = 1.5D_6$ are optimal
 - Tilt angle (s) = Latitude (L),
 optimizes performance by
 making response more uniform
 over year
 - Different merit function can be used to optimize performance for a given time of the day/year:
 - Afternoon to handle cooling needs
 - More equitable over the year such that winter performance drives design

- Preliminary results show that a shape that helps trap incident radiation is
 - better:

- Cross section of "tube" using NURBS.
 Optimized with ray tracing software
- The recesses trap light
- This gives light a "second chance
- Shape depends greatly on merit function
- Note that performance will approach a flat panel

Future studies

CONCLUSIONS

Conclusions

- Cylindrical tubes only offer minor improvements (morning and evening hours)
- Decreased performance around solar noon
- Effective ray trace modeling can be done
- Étendue drives the design:

To ignore it can be hazardous!

 System can be improved (slightly) with software optimization – Not enough time to go into the details here

Future research

- More optimization cases:
 - Modification of merit function
 - More study of "tube" shape
- Include National Weather Service data taking into account local sky conditions (i.e., in Santa Clara)
- Specular edge ray concentrator between tubes, but this step "violates" the simplicity of the tubular array geometry

What to do with 15 Million Tubes?

www.solideas.com/GlassTubes.html

