Concentration of solar radiation by white backed

photovoltaic panels

Greg Smestad and Patrick Hamill

In this paper, we present an analysis of the concentration achieved by white backed photovoltaic panels.
Concentration is due to the trapping by light scattered in the refractive plate to which the solar cell is bond-
ed. Using the reciprocity relation and assuming the ideal case of a Lambertian distribution, a detailed
model is formulated that includes the effects of the thickness and walls of the concentrator. This model
converges to the thermodynamic limit and is found to be consistent with experimental results for a wide
range of cell sizes. Finally, the model is generalized to multiple-cell photovoltaic panels.

I. Introduction

Much of the interest in photovoltaic power has turned
to low concentration arrays. A device which is already
used by photovoltaic panel manufacturers involves light
trapping via total internal reflection. This concentrator
is created inadvertently when the cells are assembled
into panels. The solar cells are usually bonded to a glass

plate which protects them from damage. Additionally,

a white plastic backing sheet is used to protect the cells
from moisture damage. Light that is incident on the
glass is either absorbed by the solar cell or reflected from
‘the white surface. This reflected light can subsequently
be collected by the solar cell if it is totally internally
reflected from the glass plate-air interface. The cell
thus collects part of the light incident on the white area
in addition to that which it collects directly (see Fig. 1).
The device has a 180° acceptance angle and can collect
a useful amount of diffuse radiation on a cloudy day.
Engineering studies have shown that under many con-
ditions this configuration can significantly increase the
economic feasibility of solar generated electricity.}?2 In
a previous paper, we described the dependence of such
a system on the plate radius and thickness, optical pa-
rameters, and cell dimensions.? Recently, this model
has been extended by other investigators to include
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absorption effects in the plate.* The effect of placing
the cgll on the edge of the plate has also been consid-
ered.

During the course of the investigations into the
characterization of this collector, questions have arisen
as to the nature of the angular distribution of the re-
flected light and the effects of the walls of the concen-
trator. In this paper, we shall analyze these effects.
We will consider the effect of painting the edges of the
plate white. The model described in our earlier paper
will be further developed, assuming a Lambertian dis-
tribution for the scattered light and applying the prin-
ciple of reciprocity. Finally, we will generalize the
theory and discuss how it may be used to analyze the
operation of multiple-cell photovoltaic panels.

Il. Theory

A. Background

In this section, by way of review, we consider some
important properties of the Lambertian distribution
and discuss how deviations from it can arise. The
general definition of intensity (in W/sr) is dI = BdA,
cosf,., where B is the brightness or radiance (in W/sr-
m2) of the emitting surface x. For a Lambertian sur-
face, such as a piece of paper, the brightness or intensity
per unit projected area is a constant and independent
of direction, as defined by 8., which is measured from
the normal of the emitting surface. The intensity is
then I = Iy cosf, where Iy = {BdA,. This is the gov-
erning equation for this distribution. The power on the
illuminated surface y due to a small area element dA,
of x is given by

dP = IdQ = BA, cosf,dQ 1)

(see Fig. 2). Using spherical coordinates dQ =
sin®,d0,d® so that the power emitted in any cone of
half-angle 0y by a small area dA, is
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Fig. 1. Typical photovoltaic panel configuration with solar cells

bonded to the white backed transparent plate. Light scattered from

the white surface may be trapped within the plate and reach the
cell.

Fig.2. Circle represents the angular distribution produced by a small
area element of a Lambertian surface (I = Iy cosf,). Specular peak
for light incident at 75° illustrates non-Lambertian characteristics
of real surfaces. Also shown is the solid angle d€ for evaluating the
fraction of light emitted from surface x incident on surface y.

’ 2 6
P=fIdQ = j; j; ® Io cosfy sinf;d0,d®

= 7l sin?0y. 2)

Consequently, the total power is wlo found by setting
6y = w/2. We now specifically consider the concentrator
illustrated in Fig. 1 and calculate the fraction of radia-
tion that may escape the glass plate. After scattering
from the white surface, the rays escaping from the plate
lie within a cone of half-angle 6., where the critical angle
0. = sin~1(1/n). From Eq. (2), the fraction of light
emitted into the loss cone from the bottom is sin%f, or
1/n2. This must be multiplied by the transmission T’
to obtain the fraction lost. In this paper, T will be es-
timated from the normal incidence transmission into
a dielectric®

Tio=r—""=" 3)

where n1 and ns are the refractive indices of the two
media.

Figure 2 shows the distribution obtained by shining
a He—Ne laser at a white surface for two different inci-
dence angles. At zero incidence angle the distribution
is approximately Lambertian. For light incident at an

angle of ~75°, the distribution has a large specular peak.,

In a white painted plate, the trapped rays will be inci-
dent on an element of the white surface at angles >0,

and from all directions. Specular reflection would help
to produce a more spherical distribution (defined as I
= ] for all f) because more radiation would be directed
at larger angles than predicted by the Lambertian dis-
tribution. Previous analyses of the concentration by
white painted plates34 assumed spherical distributions.
As we shall see in the next section, this can lead to ov-
erestimating the maximum theoretical concentration
ratio.

B. Simple Theory

In this section, we will develop two simple models that
can be used to understand and describe the concen-
trator. The first simple approach involves analyzing
the light-propagation process as a sequence of individ-
ual bounces. This results in an infinite series for the
power on the cell P, as a sum of (1) the energy directly
incident on the cell; (2) the energy incident on the cell
after once bounce and (3) after two bounces, etc. We
will let subscripts i, g, ¢, and B refer to incident, glass,
solar cell, and white bottom area, respectively, and A
and T signify area and transmission. The fraction of
scattered light which is trapped in the glass plate after
each bounce is G. Then, following the path of light as
shown in Fig. 3(a), we have

P. = E;T;gTgcAc + EiT,’ngcAcG + EiTingcAcGz +...

= EiTingcAc , 4)
1-@&
where we have used the fact that
- Gn = 1 .
n=0 (1 - G)
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Fig. 3. (a) Geometry for the series approach simple model. Light

incident on the glass plate may reach the cell directly after one or more

bounces. Note total internal reflection from the top surface. (b)

Geometry for the detailed balance simple model. The incident illu-

mination is Ejnc, and the illumination on the bottom is E;. Light

reflected from the cell and bottom into the critical cone escapes the
system.
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The power received directly by the cell is E; A, times the
two transmission factors T;, (air/glass) and T, (glass/
cell). This is the first term in Eq. (4). The remaining
terms in the series represent the power into the cell after
the light has made one, two, . . . bounces on the white
surface.

The fraction G is simply the fraction of the incident
light which is reflected from the white surface and cell
multiplied by the fraction of this light which is not lost
through the critical cone. Hence, if the reflectivity of
the white surface is denoted by Ref. we have

G = [Ap Ref/Ag + Ac(1 — Tyge)/Ag](1 — Tgi/n2). (5)

Note that the light reflected off the cell is also Lam-
bertian, and so the same fraction T,;/n? will be lost
before redistribution on the bottom. The measured
concentration C is defined as the power absorbed by a
cell in the concentrator P, divided by the power ab-
sorbed by a cell outside the device E;T;,A,. There-
fore,

C = P./(AE;Tic) = (TigTge/Tic)/ (1 — G). (8)

Note that to obtain the ratio of the illumination on the
cell inside to outside the device (optical concentration),
T;c and T are set to unity.! If the reflectivity is equal
to unity, and the cells are very small (Ap = Ag), the
maximum concentration is

C= (T,-g/Tg,-)nz. (7)

Thus for the case of small cells, C approaches n2, which
is the thermodynamic limit for a concentrator with a
180° acceptance angle.”8 So this simple model with a
Lambertian distribution and n = 1.49 yields C = 2.2.
However, if one assumes that the distribution is
spherical, the fraction of light that can escape is T, (1
= cosf.). Replacing T,;/n?in Egs. (6) and (7) by this
expression leads to a concentration of 3.86, which is
larger than the thermodynamic limit. Since any de-
viations from the Lambertian distribution must occur
so as to preserve the n2 limit, we see that the spherical
distribution previously used3 is not an appropriate ap-
proximation to non-Lambertian distributions.

The second simple model follows from that used by
Yablonovitch and Cody® to calculate absorption in
white backed solar cells. This approach uses the
principle of detailed balance to consider the net amount
of power leaving or entering a given volume [see Fig.
3(b)]. We will define E, as the total instantaneous il-
lumination on the bottom surface. To find the con-
centration we apply conservation of energy. There is
one energy balance equation for the glass plate and one
for the cell. For the glass plate,

ETigAg = Eg[(1 — Ref)Ap + RefApTgi/n?
+ AcTcg + A (1~ Tgc)Tgi/nzL (8)

where the left-hand side is the power transmitted into
the glass by direct incidence. The terms on the right-
hand side are the power lost from the glass by (1) ab-
sorption by the white surface, (2) escape from the white
surface through the critical cone, (3) propagation into
the cell, and (4) reflection from the cell into the critical
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cone. Note that we have assumed that due to the high
absorption coefficient of the solar cell material a negli-
gible amount of light escapes from the cell. The energy
balance for the cell is

E Ty Ac = P.. 9

Substituting for E, from Eq. (8) yields the power P,
absorbed by the cell. The expression one obtains for
the concentration is identical to Eq. (6).

Not considered in these simple expressions are the
effects of light incident on the walls. Also, both assume
that the fractional collection by the cell is not a function
of the plate thickness and is equal to the fractional area
that it occupies, as was assumed in previous engineering
studies.! This is not necessarily true. It is for this
reason that we now expand the series approach Lam-
bertian model to include the concentrator’s dependence
on plate thickness and wall reflection. We will then
present experimental results to evaluate the validity of
our model and to determine where any deviations such
as specular reflection have arisen. However, to expand
the model we must first introduce reciprocity.

It is a well-known concept in the study of thermal
radiation heat transfer!® that the fractional exchange
of energy is related to the areas of the emitters by the
reciprocity relation

xyAy = y:As, (10)

where y, is the fraction of radiation emitted by surface
¥ that is intercepted by surface y. Inthe notation used
in this paper, the subscripted letter indicates the frac-
tion of diffuse light going to a surface, and the subscript
indicates the origin of the light. It can be shown that
if one restricts the radiation transfer to rays arriving or
leaving a surface within a particular angular range
smaller than the set of all possible angles, the restricted
reciprocity relationship holds:

xJAy = ylA,, (11)

where y? is the fraction of energy emitted by x in a given
range of angles arriving at y (see Appendix).

C. Detailed Theory

We now have the tools to expand the series approach
Lambertian model to include the effects of the thickness
of the plate. The complete process occurring inside the
concentrator is shown in Fig. 4. Light reflecting from
the white surface has four possible subsequent paths.
A fraction Ip is lost through the critical cone. A fraction
Cp reaches the cell, and fractions Bg and Wy reach the
bottom and wall, respectively. We use subscripts B, W,
and C to denote quantities pertaining to the bottom,
wall, and cell, respectively [see Fig. 4(a)]. To find the
total power involved, we simply multiply each fraction
by the area of the white surface and by the incident il-
lumination. We will neglect absorption and trans-
mission losses at present

Considering the light reflected from the white painted
walls [Fig. 4(b)], there are also four possible paths. The
light can be lost [w, collected by the cell Cyy, incident



on the bottom By, or incident on the wall Wy.. Thus
the two equations that hold for the fractions involved
are ,

Cg+lg+Bg+Wg=1, (12)
Cw+lw+Bw+ Wwy=1 (13)

To describe completely the concentrator we must de-
termine these eight exchange fractions.

We now consider multiple bounces. After the first
bounce, a fraction, Ref, of the incident light is reflected
from the bottom, and a fraction, Cg Ref, reaches the
cell. After the second bounce, as shown in Fig. 4(b),
CgBg Ref? + C,,Wpg Ref2is collected by the cell. One
will note from Fig. 4(c) that the fraction of the incident
light reaching a given surface depends on the history of
the preceding bounces. A concise manner of expressing
the fraction of light reaching a given surface on the (n
+ 1)th bounce as a function of the nth bounce is the
matrix equation:

0 RefCy RefCp 0 C C

0 RefWw RefWp 0 w w

0 RefBw RefBp 0 \ B \ B | a4
0 Reflw Reflp 0 /s l

n+1

Here C, W, B, and [ in the column matrices refer to the
fractional amount of light at the nth or n + 1st bounce
that reaches the cell, wall, or bottom or is lost, respec-
tively.
incident light that reach the cell, wall, and bottom on
the first bounce are C; = Cg Ref, W; = Wg Ref, B; =
Bpg Ref, respectively, we obtain for the second bounce
the quantity C2 = CpBp Ref2 = CyWpg Ref2. If we
denote the 4 X 4 matrix by the symbol M, the sum Sx
of the fraction of the incident power on the bottom that
subsequently reaches surface X is given by

CB Ref

Sc ()

S [l w Wpg Ref
L =a+Memz M) BT
S n=0\ B Bg Ref
S 1 /0 ‘\Ig Ref

(15)

where I is the identity matrix. The last term on the
right refers to the first bounce fractions going to each
surface as depicted in Fig. 4(a). From matrix algebra
it is known that

> Mn = (I- M),
=0

so S¢ as obtained from Eq. (15) is given by

For example, noting that the fractions of the

Ce By

(1-Ref)
(@)

t %
A
M\Cw /ca & w:"

T (-Ren |

(b)

AW

(1-Ref)

(1-Ref

(C)

Fig. 4. Path of light through the concentrator showing the history

of the light that reaches the cell on the (a) first, (b) second, and (c)

third bounces. This is a photon flow diagram. The fraction going

to a surface on a given bounce depends on the amount going to each
surface on the previous bounce.

CB Ref
@ Wg Ref
Se=% Co=a-m-f 2°°
n=0 Bpg Ref
lB Ref

Using the definition that the inverse of the (I — M)
matrix is its adjoint divided by its determinant, one
obtains for S¢
Cw(1 — B Ref) + CgBw Ref
(1 — Ww Ref)(1 — Bp Ref) — WgBw Ref?
Cp(1 — Ww Ref) + CwWp Ref
(1— Ww Ref)(1 — Bp Ref) — WsBw Ref?
To find the power on the cell we now multiply each term
in the expression for S¢ by the area of the reflective part
of the bottom Apg and by the incident illumination. We
also add to this sum the amount of power going to the
cell directly, which for the case of unity transmission
factoris AcE;. The concentration is then given by this
summed quantity divided by the power going to a ref-
erence cell outside the device (which is also AcE;).
Taking all these conditions into consideration, the
concentration by a white painted plate is

Sc = Cg Ref + Wg Ref?

+ Bg Ref? (16)

C =1+ CgAp Ref/Ac

CwAB[BBWB Ref? + Wg(1 — Bp Ref) Ref?] + CgAg[WgBw Ref? + Bg(1 — Wiy Ref) Ref?]

- (1

Ac[(1 — Ww Ref)(1 — B Ref) — (WgBw Ref?)]
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In the absence of walls, Wp = 0, and this equation is
identical to that given in our previous paper.?

If we wish to consider transmission loss at the air—
glass interface, we must multiply this expression by Tjg
as was done in the simple models. If the concentration
is measured using a reference cell of nonunity trans-
mission, we divide the given expression by T;.. We
cannot consider the effect of the transmission of the cell
bonded to the plate simply by multiplying Eq. (17) by
Tge, for this would imply that all the light reflected off
the cell is lost. This is not the case as some of this light
may hit the bottom again. To include this effect rig-
orously, one must modify the expression given in Eq.
(14) to include terms describing the fraction of light
reflected by the cell that reach the bottom, cell, wall, etc.
However, for the case of diffusely reflected light from
a large cell, one may assume that much of the reflected
light returns to the cell after a fraction Tg;/n2 is lost
from the glass. Thus we multiply Eq. (17) by the ef-
fective transmission of the cell, which is approximately
Tge + (1 — Tge)(1 — Tyi/n?). Here (1 — Ty) is the
fraction reflected diffusely from the cell.

We now calculate the eight exchange fractions of Egs.
(12) and (13), which are used in the expressions for the
concentration ratio. The methods of our previous
paper,? in combination with reciprocity, will be used to
calculate these fractions. Throughout the rest of the
paper, r is the distance from the center of the plate to
an area element on the bottom. The thickness and
radius of the plate are denoted by h and R, respectively.
The cell diameter is W. We begin by calculating Cy,
the fraction of light reflected from the wall which
reaches the cell. We use the reciprocity relationship
CwAw = WcAc. Therefore, Cwy = W (W2/4)/(2Rh).
Note that diffuse light does not actually come from the
cell, but we use the reciprocity construction to find Cw
from W¢, which is easier to calculate. If we approxi-
mate the fraction from the whole cell to the wall to be
equal to the fraction from the center of the cell to the
wall, W¢ can be readily calculated as follows:

We = 1/Uyr) f 1dQ

27 /2
=1/(Iom) j; j;b I cosfsinfd0d ®
= (1 — sin20p) = 4h2/(4h2 + R2), 18)

where , is the angle between the normal and the mar-
ginal ray that reaches the corner of the bottom via TIR.
If 0y < B¢, then W¢ = 1 — sin20c, because sin20 is the
fraction lost and all rays not lost will reach the wall.

Although the fraction to the wall does vary with the
area element position r, a detailed calculation shows
that this variation does not exceed 1%, and hence the
approximation is valid. Consequently, we use the ex-
pression

Cw = (1 — sin20y)(W2/4)/2Rh. (19)
We now consider the fraction of light from the bottom
which hits the total bottom surface a second time, Bg
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+ Cp. Note from Fig. 5 that the marginal ray that hits
the bottom corner of the wall makes an angle 6, with the
surface normal. This angle will be a function of ® and
r. The fraction of light from an infinitesimal area ele-
ment a distance r from the center of the system reaching
the bottom bp and cell ¢p is

/2 a
bp +cg =2/(Iom) J; j; OIO cosf sinfdfd ®
cl c

/2 ,
=1/r f (cos20, — cos20)d®. (20)

Pe1

The integral for ® is taken from ®., to m/2 and not
necessarily from —m/2 because there may be some value
of ® = ., so that §, = 6,. At this value of ® and
smaller, there will be no rays to the bottom. The
quantity 6 is found from Fig. 5 and the law of cosines
as applied to the distance from the scattering point to
the wall corner p. We obtain

cosfly = 2h/(4h2 + p2)1/2
= 2h/[4h? + R? + r2(sin2® —~ cos2®)
+ 2Rr sin®(1 — r2/R? cos2®)1/2]1/2, (21)

This equation can be solved numerically for ®., by
setting 8, = 6. Ifno solution is found, the lower limit
in Eq. (20) is taken as —7/2. Using the value obtained
for ®., and Eq. (21) for 6, Bg + Cg can be evaluated by
integrating Eq. (20).

The total fraction of light going to the entire bottom
is the integral of bg + cp over the white bottom area
divided by this white area plus the light that can (geo-
metrically) escape but is reflected from the air-plate
interface. This yields

R
Bg+Cp =1/Ap fm(bB +ep)2mrdr + lp(1 — Tg).  (22)

To calculate Cp, the fraction of light going from the
white bottom surface to the cell, we modify the equa-
tions used to obtain Bg + Cg. Given the fraction of
light B¢ that can geometrically fall on the bottom from
the cell, we can use reciprocity to calculate the opposite
fraction Cg.

(W2/4)
C®R2- W)

Cp = (23)

Fig. 5. Geometry for calculation of the fraction of light emitted from
the bottom that may reach the bottom, Bg + Cg. The top view shows
the azimuthal angle ®.



WP

Fig. 6. (Top) Geometry for the calculation of b, showing the mar-

ginal rays 01 and 6. On the left and right is the geometry for loss from

the bottom and wall, respectively. In the circular sketch on the

bottom the shaded region indicates the region that may receive rays

from the cell directly by TIR. Rays within the critical cone which are
reflected reach the crosshatched region.

The fraction of light that can go from the cell to the
white bottom B¢ is given by

w/2
j; b.2wrdr
B = —mmm— 24
C W4 (24)
so that Cp is given by
w/2
J; be2rdr
Cg = —mmmmm.
2= RE= W) (25)

The geometrical fraction of radiation that can reach the
bottom from an area element a distance r from the
center of the cell b, is given by analogy with Eq. (20)
as

w2 e .
be=1/mw J;“ j;l cosfl sinfdfd P

=1/x f ™ (cos28y — cos?6;)d®, (26)
‘I’cl

where 0 is the same marginal ray that was used in the
Bp + Cp calculation. The angle 0 is defined by the ray
that reaches the edge of the cell (see center panel, Fig.
6). Itis calculated by replacing R with W/2 in Eq. (21).
If 8, < 0., we replace cos2f; with cos26¢ so that only rays
that are outside the loss cone will be considered. Be-
cause of the possibility that this inequality is met for
some value of & = &,,, we split the integral into two
parts. The area that may receive rays from the cell is
shown in the shaded region at the bottom of Fig. 6.
Thus b, is

L2
b, =1/% [j; ? (cos28, — cos20y)d®
el

/2 .
+ . (cos26; — cos20,)d®| - 27)
c2

Note that if §; < 0¢ at ® = 7/2, P, is 7/2, so the second
integral is zero.

To accurately calculate b, we must include Fresnel
reflection at the plate—air interface. The area of the
bottom that may receive reflected rays within the crit-
ical cone is shown in the crosshatched region of Fig. 6.
Adding the two integrals that represent this fraction of
light to Eq. (27) we obtain

/2 ,
b, =1/ [J; (cos20; — cos2ly)d P
c2

®, ,
+ : (cos28, — cos26,)dP
Py

Pe
+(1—Tg) j; 2(cos01 — cos26,)d®
(3%

ey ,
+ (1= Ty) J: . (c0s01—-c08200)d<1>l- (28)

Using this value for b, in Eq. (25) Cg can be ob-
tained.

We may now find Wg from Wg =1— (Bg + Cg + Ig).
Then By can be calculated using the reciprocity
equation AwBw = WpgAp, again illustrating the use-
fulness of reciprocity.

Calculation of the fraction lost from the wall Iy in-
volves a slightly different approach than that used to
find Bg + Cg. The half-cone of rays about the y axis
defining the loss from the wall is shown at the extreme
right-hand side of Fig. 6. If we were to use the angles
0 and @ to calculate the solid angles involved, the ge-
ometry would be complex (see right-hand side, Fig. 7).
However, the fraction [y can be readily calculated if we
integrate using the angle 8 (the azimuthal angle about
the y axis) instead of ® (the azimuthal angle about the
z axis) (see left-hand side of Fig. 7). The Lambertian
distribution in terms of § and B is I = I cosf cosf.
Therefore,

/2 /2
lw = Tgi/ (wlo) f f To cosd cosB cosfd0df
—7/2 J(x/2-6;)

= Tyi[0, — (sin26,)/2]. (29)

The Tg; term accounts for the transmission of the in-
terface.

As stated earlier, the simple equation for the losses
from the bottom for a Lambertian surface is Ip = sin20,.
However, this must be corrected for the light within the
critical cone that hits the wall (see left-hand side, Fig.
6). For area elements within a distance h tanf, of the
wall, some of the light in the critical cone will strike the
wall. The fraction of radiation from the bottom within
the loss cone that intercepts the wall is denoted W$.
Thus the corrected loss from the bottom is

I = Tg(sin20, — WY). (30)
We can calculate W$ from the restricted reciprocity
relation

W% = (Aw/Ap)BYy = BY2Rh/(R2 — W2/4). (31)

Here BYy is the fraction of radiation leaving the wall so
as to be incident on the bottom in the restricted range
0 <8< 8. Duetothesymmetry between the top and
bottom surfaces of the concentrator, BYy is the same as
lw previously calculated. The corrected loss from the
bottom is thus
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Ig= Tgi(sin20, — 2Rhlw/(R% — W2/4). (32)
For the case of a small plate or a large cell we may
have R — W/2 < h tanf,. Then some of the light cal-

culated from By will fall onto the cell, and B, will not
be equal to lyy. One may estimate the actual W$ by

again using the equations used for Bg + Cg. The
modified W$ is calculated from
0 _ Peg Oc .
s =2/Uom) | - J; . Tocosl sindd0d®
‘1’03
= 20, — 2
1/% J-'-,r/z (cos20 — cos20.)d P, (33)

where 05 is defined by the ray that reaches the top cor-
ner of the plate, and ®., is the value of ® when 8, = 6,
(see left-hand side, Fig. 6). The quantity 6, is given
by

cos202 = h2/(p2 + h2). (34)

Since the white area is relatively small for this case, we
may consider the value of 05 to be a constant and equal
to its value at r = (R + W/2)/2 in the expression for p
given in Eq. (21). This neglects the area integration
indicated in Eq. (22).

After finding each of the eight terms in Egs. (12) and
(13) we must modify each to consider the effect of a
nonzero absorption coefficient @. To approximate the
absorption by the plate, one must consider the path of
the light through the concentrator. First, the light is

WALL

absorbed by the plate even before it reaches the bottom.
For normal incidence, the concentration expression
must thus be modified to

C’ = C exp(—ah). (35)

For light reflecting off the bottom, the strongest trapped
intensity occurs at about 0.. Using this ray’s path
length the absorption corrected Cg and Bp can be ap-
proximated by

C3 = Cp exp(—a2h/cosf,), (36)
B’ = Bg exp(—a2h/cosf.). (87)

For By and Wpg one considers the path from the mid-
point of the wall to the point midway between the edge
of the cell and wall. This yields

B = By exp{—alh?/4 + (R/2 — W/4)?|VY, (38)
W3 = Wg exp{—alh?/4 + (R/2 — W/4)2]/2, (39)

For Cy, we consider the path from the midpoint of the
wall to the midpoint of the cell to yield

Cw = Cw exp|—a(R? + h?/4)172], (40)

Finally, to consider the path from the wall to the wall,
we take an average angle of 7/4 as measured from the
diameter to obtain

Ww = Ww exp(—a2R cosw/4). (41)

P=90-6,

%

Fig.7. (Right) Geometry for calculation of the light lost from the wall using 6 and ®. The half-cone of angle . contains the rays that may
leave the plate. (Left) Geometry for calculation of Iy using § and .

4400 APPLIED OPTICS / Vol. 23, No. 23 / 1 December 1984



2.0

1.8

1.8

CONCENTRATION

0.0 .2 .4 B .8 1.0 1.2 1.4
PLATE THICKNESS h (CM)

Fig. 8. Experimental and theoretical concentration values as a

function of the plate thickness h for three different cell sizes. W =

1.1, 2.0, 5.08 cm (squares, circles, triangles). The plate radius R is 3.81
cm. Error in the concentration is £0.025.

Now that we have evaluated the eight terms repre-
senting the fraction of scattered radiation going in a
particular direction, we can calculate the concentration
ratio from Eq. (17). Inthe next section we compare this
theory to measured concentration values.

Ill. Experimental Materials and Methods

The experimental setup consisted of Spectrolab sil-
icon solar cells bonded with immersion oil (n = 1.49) to
an unpainted area on the bottom of a round transparent
acrylic plate. The bottom of the plate was painted
white with the kaolinite clay mixture described in a
previous paper.? To insure constant reflectivity, the
thickness of the concentrator was varied by stacking
acrylic plates on the first plate with immersion oil be-
tween the plates. The edges of the plates were also
painted white. Using an integrating sphere, the diffuse
reflectivity was found to be 0.82 +0.01 at a wavelength
of 800 nm (peak response of the Si cell). The absorp-
tion coefficient for the acrylic was taken from the
manufacturer’s data as 0.01 cm™1. To check for the
existence of an optical bond between the paint film and
the plate, a He-Ne laser was shined onto the plate. A
pattern consisting of a bright central spot surrounded
by a dark circle, of radius R,, was then visible if an op-
tical bond was indeed present. This Pfund effect® can
also be used to calculate the index of refraction of the
plate from n = (1 + (2h/R,)2)V/2. The concentration
ratio was taken as the short circuit current ratio of the
cell bonded to the apparatus to that of a cell not bonded
to the apparatus but at the same solar orientation. This
measurement can be used to obtain the effective con-
centration since the current is proportional to illumi-
nation.

IV. Experimental Resuits

Figure 8 shows the experimental and theoretical re-
sults obtained for the concentrator with R = 3.81 cm
and W = 1.1, 2.0, and 5.08 cm as a function of the plate
thickness h. Figure 9 shows the effect of varying R for
h =0.318cm and W = 5.08 cm. Note that theory and
experiment agree for a wide range of h and W values.

The correlation does fall off somewhat as the plates
become thinner. This could be due to the fact that for
small h values the rays that are collected by the cell
arrive at very large angles, and, therefore, surface re-
flection losses are increased. These reflection losses can
be accounted for by including the fact that the reflec-
tivity depends on the incidence angle. However, these
differences between theory and experiment are small,
and the theory describes well all the major features of
this concentrator.

V. Generalization to Multiple-Cell Photovoltaic
Panels

It is of interest to see how the theory applies to con-
ventional panels where many cells are fixed to a large
plate. Considering the area x around one cell in such
a panel, the equation relating the exchange of energy
between it and the surrounding white area y is the rec-
iprocity relation. [The quantity y, in Eq. (10) is Wg.]
Since the direct incident light on each surface is equal,
so is the amount of power emitted from a given area.
Therefore, the amount of power leaving an area of ra-
dius R around the cell is equal to the power coming into
this area from all other areas. In other words, the region
can be modeled as an independent concentrator of ra-
dius R with nowalls. Thus for large photovoltaic panels
the concentration can be calculated by the theory with
WB = 0.

An important point for designers is that the experi-
mental (and theoretical) maximum in concentration for
a large photovoltaic panel will be at a different h value
than for a small experimental setup of the same ratio of
cell to total area due to the presence of the walls. To
model a small system, the walls must be considered.

VI. Conclusion

We have shown that the concentration of a white
backed photovoltaic panel is given by Eq. (17). As-
suming the distribution of the light to be Lambertian,
the thermodynamic limit of n2 for the concentration is
predicted by the theory. Except for thin plates, in
which case a greater proportion of the light is incident
on the cell at large angles, the theory and experiment
correlate well. The deviation is most probably due to
the lower solar cell transmission at these angles. Pre-
liminary experiments with textured solar cells show that
this surface transmission effect can easily be avoided.

It should be noted that this analysis was made much
easier by use of the reciprocity principle. Such an
analysis could be applied to more difficult problems
such as those being proposed in the field of optical
biology. For example, it has recently been demon-
strated that etiolated plant tissue exhibits light trapping
and scattering similar to the process described in this
paper for a photovoltaic concentrator.l! Using the
preceding type of analysis, one might gain insight into
the operation of the most successful solar converters on
earth.
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Fig.9. Experimental (triangles) and theoretical concentration values
for h = 0.318 cm, W = 5.08 c¢m as a function of R.

Appendix

The concept of reciprocity allows one to calculate the
fraction of light from a surface that reaches another
surface by knowing the fraction of light that could leave
the second surface and reach the first. This is a well-
known concept in the study of thermal radiation heat
transfer.’0 If we consider the fraction of radiation going
from a surface x to a surface y, we find that the ex-
change factors are given by

yx = j; ) j:t, (BxdA, cosly coslydA,)/(wB;A;S?)

= f (IdQ/total power), (A1)

xy = L , j;  (BydA, costly cosOcdAL)/(rBydyS7),  (A2)

where S is the distance between the area elements in
question. Both # and S will be a function of the position
of the surfaces (see Fig. 2). From these equations we
see that x,A, = y.A,. Note that these equations are
valid exactly for the Lambertian distribution since the
cosine factor appears twice for different reasons. Note
also that this result is independent of the fact that some
of the radiation could come from total internal reflec-
tion. This is true since we can always project reflected
rays to a virtual Lambertian source.

Another useful relationship is obtained by restricting

the rays that reach each surface to a subset of the total
possible exchange. Consider two surfaces x and y that
are exchanging diffuse radiation as before. If one
considers only those rays leaving dA, within some re-
stricted range of angles, the integral in Eq. (A1) is car-
ried out over only a portion J of the area A,, so that JA,
is the region of A, accessible to rays with the specified
angles. To calculate the light from y to x within the
same angular range, we can integrate Eq. (A2) over the
same restricted area JA, because of the reversibility of

the paths of emission and incidence. Integrating Egs.
(A1) and (A2) over A, we can equate the fractions of the
radiation reaching each surface in the desired range.
We obtain the restricted relation

x94, = yl4,. (A3)

The general and restricted reciprocity relations are
powerful tools for the study of light scattering.
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